Radial Transformations
These one-dimensional grids can be transformed to other kinds of intervals using the
radial transform
module.
Transform |
Domain |
Co-Domain |
\(r(x)\) |
---|---|---|---|
\([-1,1]\) |
\([r_{min},\infty)\) |
\(r_i = R \frac{1 + x_i}{1 - x_i} + r_{min}\) |
|
\([-1,1]\) |
\([r_{min},r_{max}]\) |
\(r_i = \frac{r_{max} - r_{min}}{2} (1 + x_i) + r_{min}.\) |
|
Co-Domain |
Domain |
\(x_i(r_i)\) |
|
Domain |
Domain |
\(x_i\) |
|
\([0,\infty)\) |
\([r_{min},r_{max})\) |
\(r_i = \frac{(r_{max} - r_{min})}{N - 1} x_i + r_{min},\) |
|
\([0,\infty)\) |
\([r_{min},r_{max}]\) |
\(r = r_{min} e^{x \log\bigg(\frac{r_{max}}{r_{min} / (N - 1)} \bigg)},\) |
|
\([0,\infty)\) |
\([r_{min},r_{max}]\) |
\(r = r_{min} (x + 1)^{\frac{\log(r_{max}) - \log(r_{min})}{N}},\) |
|
\([0,\infty)\) |
\([0,\infty)\) |
\(r_i = \frac{a x_i}{(1 - bx_i)},\) |
|
\([-1,1]\) |
\([r_{min},\infty)\) |
\(r_i = -R \log \left( \frac{x_i + 1}{2} \right) + r_{min}\) |
|
\([-1,1]\) |
\([r_{min},\infty)\) |
\(r_i = r_{min} - R \log \left( 1 - 2^{-k} (x_i + 1)^k \right)\) |
|
\([-1,1]\) |
\([r_{min},\infty)\) |
\(r_i = R \left( \frac{1+x_i}{1-x_i} \right)^m + r_{min}\) |
|
\([-1,1]\) |
\([r_{min},r_{max}]\) |
\(r_i = \frac{(1+x_i)^m (r_{max} - r_{min})} { 2^m (1 - 2^m + r_{max} - r_{min}) - (1 + x_i)^m (r_{max} - r_{min} - 2^m )} + r_{min}\) |